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The natural-convection boundary-layer flow on a vertical surface generated by Newtonian 
heating in which the heat transfer from the surface is proportional to the local surface 
temperature is discussed. Solutions valid near the leading edge and valid far downstream 
are obtained and are joined by a numerical solution of the governing equations. The 
solution far downstream gives rise to a novel similarity system that is analyzed in detail, 
with solutions being obtained for large and small values of the Prandtl number. 
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1. I n t r o d u c t i o n  

The usual way in which natural convection flows are modeled 
is to assume that the flow is driven either by a prescribed 
surface temperature or by a prescribed surface heat flux. A large 
number of calculations have been performed, especially for the 
large Grashof number (or boundary-layer) limit, for such 
surface conditions and for various geometrical configurations. 
Much of this work is detailed in the recent book by Gebhart 
et al. (1988). Here a somewhat different driving mechanism for 
the natural-convection boundary-layer flow is considered in 
that it is assumed that the flow is set up by Newtonian heating 
from the bounding surface. In particular, the heat transfer from 
the surface is taken to be proportional to the local surface 
temperature. 

A situation somewhat similar to that treated here arises in 
what are usually termed conjugate convective flows, where the 
heat is supplied to the convecting fluid through a bounding 
surface with a finite heat capacity. This results in the heat 
transfer rate through the surface being proportional to the local 
difference in temperature with the ambient conditions (see, for 
example, Pop et al. 1985; Pozzi and Lupo 1988; Merkin and 
Pop 1993). This configuration has also arisen in a model of the 
convective flow set up when the bounding surface absorbs heat 
by solar radiation (Fathalah and Elsayed 1980). Merkin and 
Chaudhary (1994) have recently extended this work, in a model 
of convective flows driven by heat transfer from a catalytic 
surface reaction, to the case where the surface heat transfer is 
proportional to a general power of the temperature difference. 

The flow on a vertical surface is considered, and a solution 
is sought by obtaining series expansions for stream function 
and temperature that are valid near the leading edge and far 
downstream. These two solution regions are then joined by a 
numerical solution of the full governing equations. It is found 
that near the leading edge the flow is driven, at leading order, 
by a constant heat flux from the surface, and the higher-order 
terms are then perturbations on the standard uniform heat-flux 
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solution. This is the same behavior seen in the conjugate 
convection problem. 

When the behavior of the solution far downstream is 
considered, it is found that there is an essential difference 
between the present case and the conjugate convection 
problem. For the conjugate convection problem, the flow far 
downstream approaches the standard isothermal wall solution. 
However, for the present case, the flow far downstream gives 
rise to a new similarity solution, and one of the main purposes 
of this paper is to treat this similarity solution in some detail. 
Solutions to this problem are obtained that are valid for both 
small and large values of the Prandtl number. It is seen that 
for moderate values of the Prandtl number, which are typical 
of gases, the surface temperature is very sensitive to Prandtl 
number variations. The basic equations and their appropriate 
nondimensionalization are given first. 

2. E q u a t i o n s  o f  m o t i o n  

Consider a semi-infinite vertical flat surface with coordinates 
2 and ~ measuring distance along and normal to it, with 
corresponding velocity components ~ and ~. On making the 
Boussinesq approximation, the equations governing the 
boundary-layer flow are 

- -  + - -  = 0 ( l a )  

c3fi O~ t3zt7 
f~ - -  + g - -  = g f l ( T  - To) + V - -  (lb) 

O T  g T  v c3ZT 
- -  + F - (lc) 
~ 8~ a g)2 

where a is used for the Prandtl number. The boundary and 
initial conditions are 

t~--0, ~ = 0 ,  o n e = 0 ,  fi-~0, T - ~ T o  

a s ~ ,  ( 2 > 0 )  (2a) 

c~T 
c~ hsT o n y  0, ( ~ > 0 )  (2b) 

tT=O, ~ = 0 ,  T = T  o a t £ = O ,  ( ~ > 0 )  (2c) 
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for some (constant) heat transfer coefficient h,. Note that 
boundary condition in Equation 2b is different from those 
taken previously. 

To begin making Equations 1 and 2 dimensionless, we first 
note that scales for the temperature difference or for the 
streamwise length do not arise naturally. However, there is a 
temperature scale, To, and a scaling h, for y. This leads to the 
variables 

T - T O = ToO, y = h~P (3a) 

A balancing of terms in Equations 2a and 2b then leads to a 

steamwise length scale g - gflTo which suggests 24 . '  v h~ 
ft = (vdh2)u, ~ = (vh,)v, x = ~1~ (3b) 

Applying the transformation of Equation 3 to Equations 1 and 
2 gives 

Ou Ov 
- -  + - -  = 0 (4a) 
8x 8y 

8u 0u 82u 
u - -  + v - -  = 0 + - -  (4b) 

Ox 8y Oy 2 

dO dO 1 020 
u - - +  v . . . .  ( 4 c )  

8x 8y a dy E 

subject to the boundary conditions 

80 
u=O, v = 0 ,  ~ y = - ( O + l )  o n y = O  

u ~ 0 ,  0--*0 a s y ~  (5) 

3.  S o l u t i o n  

3.1. S o l u t i o n  fo r  s m a l l  x 

The flow develops initially by heat flux from the surface, which 
suggests the transformation 

= x'/SF(x, O, 0 = xl/SH(x, O, ~ = y/x u5 (6) 

to obtain a solution valid near the leading edge (where ~, is the 
stream function). Applying equation 6 to equations 4 and 5 
glves 

0aF 4 02F 3 ( S F ~ 2 = x ( 0 F  82F OF 82F~ (7a) 

oF (dr on oF ong) 1 8 2 H  4 ____0H 1 H - - = x  (7b) 
o- S + ~ F o~ 5 o~ \ o~ Ox Ox 

subject to the boundary conditions 

OF --=OH - 1 -  xl/SH o n ~ = O  
0¢ 

OF 
- - - - * 0 ,  H ~ 0  a s ~ o o  (7c) 0~ 

These boundary conditions suggest looking for a solution by 
expanding 

F(x, 0 = Fo(0 + xl/SFl(O + " "  (8) 

n(x, 0 = Ho(O + xUSnl(o + " "  

The leading-order terms (Fo, Ho) are given by uniform 
heat-flux solution (Sparrow and Gregg 1956). The effect of the 
Newtonian heating boundary condition is felt at O(x 1/5) 
through the boundary condition H'I(0 ) = -He(0), where He(0 ) 
is known from the leading-order problem. The solution of the 
resulting equations is straightforward, and for a = 1, it is found 
that 

0 s = xt/5(1.8728 + 2.5980x 1/5 + ...) 

% = x2/5(1.3774 + 1.3450x u5 + "") (9) 

(;) where 0 s = O(x, O) and ~w = 
y=O" 

3.2. S o l u t i o n  fo r  l a rge  x 

Well downstream, the convective flow is driven by the 
Newtonian heating. This consideration, together with an 
examination of Equations 4 and 5, leads to the transformation 

= x f(x,  y), 0 = x h(x, y) (10) 

with y left untransformed, in order to obtain an asymptotic 
solution. Applying Equation 10 to Equations 4 and 5 gives 

03f + h ,02f  (Of~ 2= x (  Of Ozf 8f 02f "] (lla) 
8y~ + l ~yZ -- \c3yJ \By OxOy Ox 63y2/I 

182h Oh Of (Of Oh 8f Shy) 
- - - +  f - - - h - - = x  (llb) 
G t;3y 2 Oy 8y \Oy 8X 8X 

subject to the boundary conditions 

f = 0 ,  --Sf=0 - - S h + h = - x  - t  o n y = 0  
8y Oy 

~f 
- - - * 0 ,  h-- ,0 a s y ~ o o  (llc) 
8y 

These boundary conditions suggest looking for a solution by 
expanding in inverse powers of x. The leading-order terms 
(fo, ho) in such an expansion satisfy 

f~' + ho +fo f~  - fo  2 = 0 (12a) 

1 
- h'~ + f o h '  o - f ' o h  o = 0 (12b) 
17 

subject to 

fo(0) = 0, f~(0) = 0, hi(0 ) + he(0 ) = 0 

fo (~ )  = 0, ho(~ ) = 0 (12c) 

(primes denote differentiation with respect to y). 

N o t a t i o n  

g Acceleration due to gravity 
h, Surface heat transfer coefficient 
T Fluid temperature 
To Temperature of ambient fluid (constant) 
u, t~ Velocity component in streamwise direction 
v, ~ Velocity component in transverse direction 
x, £ Coordinate along the surface 

y, ~ Coordinate normal to the surface 

Greek 

0 

symbols 
Coefficient of thermal expansion 
Dimensionless temperature difference 

0, Dimensionless surface temperature 
v Kinematic viscosity 
¢r Prandtl number 
Zw Dimensionless skin friction 
~, S tream funct ion  
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The solution of Equations 12 will be discussed in detail 
below. The solution will arise, for example, as the similarity 

solution when the surface heating,/'\(t3/} ,is proportional to 
\~Y/y=o 

the surface temperature difference, (T - To)y=o, i.e., when the 
dimensionless boundary condition to be applied on y = 0 is 
modified to 

~0 
- 0 ( 1 3 )  

dY 

The problem when the right-hand side of Equation 13 is 
replaced by O N, for a general exponent N, has been treated for 
values of the Prandtl number of 0(1) by Merkin and Chaudhary 
(1994). 

The boundary condition of Equations l lc  suggest that the 
next term in the asymptotic expansion should be of 0(x-~). 
However, the solution at this stage is indeterminate because of 
the leading-edge shift effect (Stewartson 1964), and the 
expansion has to be modified to (Stewartson 1957) 

f ( x ,  y) = fo(Y) + x-l(log x(a~(y) + f~(y)) + "" 

h(x, y) = ho(y) + x -  ~(log xg~(y) + h~(y)) + ' "  (14) 

The leading-order terms (fo, ho) satisfy Equations 12, and the 
terms (q~l(Y), gl(Y)) are the eigensolutions 

q~1 = gf0, Yl = cth0 (15) 

for an as yet undetermined constant ~. Using Equation 15, the 
equations for (f~, h~) are 

f~'  + ht + fof '~ - f of ' l  = ct(fo 2 - f o f  o) (16a) 

1 
- h'~ + foh '  t - hof'~ = ~(hofo - foho) (16b) 
(7 

subject to 

f , (O)  = O, f '~(O) = O, h',(O) + h,(O) = - 1 

f'~(oo) = O, h,(~)  = 0 (16c) 

To solve Equations 16 numerically, it is necessary to 
construct two complementary functions namely, (f,, h,) and 
(fb, hb), where f~(0)= 1, h i 0 ) =  0, h',(0)= 0, and f~(0)= 0, 
hb(0 ) = 1, h~,(0)---0, and also to construct two particular 
integrals, namely, (f~, h~), for which ct = 1 and homogeneous 
boundary conditions are taken, and (fd, ha), for which ~ = 0 
and the condition h~(0)+ h i 0 ) = -  I is applied. The full 
solution is then given by 

fl = af~ + bf~ + ctf~ + fd (17) 

h 1 = ah,, + bhb + cxh~ + h a 

for constants a and b. Now, as y ~ oo, 
Ai 

h, ~ A,,  f'i ~ - Coo y + B, (i = a, b, c, d) (18) 

for constants A~ and B~ and where Co = fo(~). The outer 
boundary conditions then give the equations 

aA ,  + bAb + etA, + A d = 0 (19) 

aB,  + bBt, + ~Bc + Ba = 0 

However, the existence of the eigensolutions (Equations 13) 
means that A,Bo - A~B,, = 0, and consequently Equations 19 
have a solution only if a compatibility condition is satisfied, 
and it is this condition that determines cc After a little algebra, 
it is found that 

AbBa - AdBb 
(20) 

A~B~ - A~B~ 

The numerical integrations then give, for tr = 1, u = 0.43464, 
However, the solution at this order is not fully determined, 
since any multiple of eigensolutions in Equations 15 can be 
added to the solution at 0(x-~), which it appears cannot be 
found from integrated forms of Equation 4c. 

Finally, for a -- I, 

0 , ~ 7 . 9 7 3 8 x + . . . ,  z , ~ 3 . 5 0 9 0 x + . . .  (21) 

a s  x - - ,  oo.  

3.3. Numer ica l  so lu t ion  

To obtain a numerical solution of Equations 4 and 5 that will 
hold for all x, starting at x = 0 and proceeding downstream 
until the asymptotic solution as given by Equation 12 is 
attained, the method of continuous transformations described 
by Hunt and Wilks (1981) for general boundary-layer 
calculations is used. This method requires the use of a 
composite transformation of variables that reflects the 
transformations of Equations 6 for small x and Equations 10 
for large x. Here the transformation 

~/ = X 4 / 5 ( 1  d- X)I/Sf(x,  f]), 0 = xl/5(1 + x)'*/Sh(x, fl), 

y(l + x) x/5 (22) 
X1/5 

is applied. Expansion 8 shows that the solution has a 
singularity in x-derivatives as x ~ 0; to remove this, the further 
transformation ~ = x x/s is made, with the numerical solution 
then proceeding stepwise in the ~-direction. The details of the 
method have been described fully elsewhere (Mahmood and 
Merkin 1988) and need not be repeated here. 

To show that the solution does in fact proceed smoothly 
from one that is valid for small x to the asymptotic form given 
above, graphs of f ~  (¢, 0) and/~(¢, 0) for tr = 1 are shown in 
Figure 1 (plotted against 0. These start at the values at the 
leading edge (as given by Equations 9) and approach their 
corresponding values downstream (as given by Equations 21). 
It can also be seen from this figure that the numerical 
integration gives an overshoot in both f ~ ,  0) and h(~, 0). 
However, this is an artifact of applying a transformation 
(Equations 22). No such behavior is seen in plots of 0, and %, 
which are shown in Figure 2 for a = 0.72, cr = 1.0, and cr = 10.0 
(now plotted against x). Figure 2 shows that the straight-line 
variation of both 0, and Tw with x, as suggested by Equation 
21, is rapidly attained, and that there are considerable differences 
in surface temperature when the Prandtl number is changed 

L 

h ( ~ C , O )  

m 

f (E,o) 
"qll 

o.O 0.5 I .O I . ~  2,0 ~.5 

Figure I Graphs of f~(~, 0) and/~(~, 0) plotted against ~ = x 1/5 for 
cr = 1, obtained from the numerical integration of Equations 4 and 5. 
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Figure2 Graphs of (a) 0s and (b) ew plotted against xfor a = 0.72, 
1.0, and 10.0, obtained from the numerical integration of Equations 
4 and 5. 

by the relatively small amount from a = 1.0 to a = 0.72 
(characteristic of air). This sensitivity of surface temperature to 
changes in the Prandtl number, at least for relatively small 
values of tr, is highlighted in Figure 3 where 0 s and ~, are 
plotted against x for a = 0.1 and 0.2. (Note the difference in 
scale between this figure and Figure 2.) Here it can clearly be 
seen that a change in cr = 0.2 from a = 0.1 produces a very 
substantial change in 0,. This point is now considered further 
by examining the solution of the similarity system (Equations 
12) in more detail. 

4. S i m i l a r i t y  e q u a t i o n s  

In this section, the solution of Equations 12 is considered in 
more detail (dropping the suffix for convenience). In particular, 
solutions valid for both a >> 1 and tr << 1 are obtained. It has 
already been established in Merkin and Chaudhary (1994), for 
physically realistic solutions, i.e., those that have h > 0, f '  > 0 
on 0 <  y < oo, that h(y) > 0 on 0 < y < oo and that h(y) is 
strictly monotone decreasing on this range. 

The numerical solution of the boundary-value problem 
(Equations 12) is straightforward, and graphs off"(0) and h(0) 
are shown in Figure 4 (in Figure 4a for a > 1 and in Figure 
4b for tr < 1). Figure 4 shows that bothf"(0) and 0(0) decrease 
as a increases, whereas they both increase very rapidly as tr is 
decreased (note the considerable differences in scale between 
Figures 4a and 4b). This behavior is now examined in more 
detail. 

Natural convection boundary-layer flow on a vertical surface: J. H. Merkin 

4.1. So lu t i on  for  ~ >> 1 

A consideration of both the numerical results for large values 
of ~ and Equations 12 suggests that the solution develops a 
two-region structure as a --. ~ ,  namely, an inner region of 0(1) 
thickness that is driven by the buoyancy force and a much 
thicker outer region in which the fluid is isothermal. A 
balancing of the terms in Equations 12 shows that the 
appropriate scalings for the inner region are 

f = tr-14, h = a - l g  (23) 

leaving y unscaled. These transformations give 

4"' + g + a-1(44"  - 4 '2) = 0 (24a) 

g" + 4g' - 4'g = 0 (24b) 

subject to 

4(0) = 0, 4'(0) = 0, g'(0) = -g(0)  (24c) 

with the outer boundary conditions relaxed at this stage. 
Equation 24a suggests looking for a solution by expanding 

in inverse powers of a. The leading-order terms (40, go) satisfy 
the equations 

4o' + go = 0 (25a) 

go + 4og~ - 4~go = 0 (25b) 

to be solved subject to Equations 24c, and outer conditions that 

4~ ~ 0, 0o -" 0 as y ~ oo (25c) 

e, 

10410- 

8 1 0 -  

e lO - 

210 - 

o.o t]o ,:. 2:, , : ,  
a x 

,:o 

I I I " I  I I I I 
0,0 0.5 LO l.S 2.0 2.§ 3.0 3.~ 

b x 
,:o 

Figure 3 Graphs of (a) 0 s and (b) Zw plotted against xfor a = 0.1 
and cr = 0.2, obtained from the numerical integration of Equations 4 
and 5. 
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Figure 4 Graphs of f '(0) and h(0) obtained from the numerical 
integration of Equations 12 for (a) a > 1 (b) a < 1. Asymptotic 
forms (Expressions 37  for a >> 1 and Expressions 51 for er << 1 ) are 
shown by the broken lines 

The numerical solution of Equations 25 gives ~o(0) = 2.5592, 
go(0) = 3.8408, and 

Oo "~ aoy + be (26) 

where ao = 1.3714, be = -0.6322. 
The form of Expression 26 suggests that in the outer region 

h -= 0 and that the transformation 

f = a -  1/20, Y = a - l / 2 y  (27) 

should be applied, with the outer region having a thickness of 
0(al/2). On matching with the inner region, it is found that 

@ ~ a o Y + a - 1 / 2 b o + " "  as Y--*0 (28) 

which suggests that a solution should be sought by expanding 

@(Y; a) = Oo(Y ) + tr-I/201(Y ) + . . .  

At leading order 

0~' + OoO~ - 002 = o 

subject to, from Expression 28, 

O o ~ . a o Y + " .  as Y ~ 0 ,  O o ~ 0  

The required solution is 

0o = x ~ o  (1 - exp ( - ,~ooY))  

(29) 

(30a) 

as Y --* oc (30b) 

(31) 

0';' + OoO'; - 20~O' 1 + 0o01 = 0 

subject to, from Expression 26, 

01-- ,bo as Y ~ 0 ,  O'1--*0 as y - - * ~  

The solution is readily obtained as 

O1 = be e x p ( - ~ o Y )  

The equation for the term of 0(o-1/,) in Expansion 29 is 

(32a) 

(32b) 

(33) 

Note that Equation 33 makes no contribution to f(oo), which 
from Equations 26 and 31 has 

f(oo) ~ a -  1/2~o(1 + 0((r- t)) (34) 

The form of the solution in the outer region requires a 
modification of the solution in the inner region by looking for 
a solution as an expansion in powers of a -  1/2, i.e., to put 

~b(y; a) = 49o(y ) + a -  1/201(y) + ' "  (35) 

g(y; a) = go(Y) + o -  l/2gl(y) + " "  

The leading-order terms are as before: at 0(a-1/2), with 

4)'1" + gl = 0 (36a) 

g'; + 4,o¢1 + 01ao - 4,ogl - $'1go = 0 (36b) 

subject to 

q~l(0) = 0, #1(0) = 0, g'l(0) = -g1(0)  (36c) 

on matching with the outer region, 

aSo/2 y2 --* 0 (36d) dPl ~ boa~/2Y - ~ -  + "" ", e l  as y --* oo 

The numerical solution of Equations 36 is straightforward. 
Finally, 

h(0) ~ a-1(3.8408 + 3.3355a-1/2 + ...) 
(37) 

i f (O)  ~ a -  1(2.5592 + 0.8254a- 1/2 + ...) 

as a --* oo. Graphs of h(0) and i f (O) as given by Expressions 37 
are also shown in Figure 4a (by the broken lines), and these can 
be seen to be in very good agreement with the values obtained 

396  Int. J. Heat and Fluid Flow, Vol. 15, No. 5, October 1994 



Natural convection boundary-layer flow on a vertical surface: J. H. Merkin 

from the numerical solution, even at quite moderate values of 
a. Expressions 37 also show that both f"(O) and/I(0) decrease 
rapidly as a is increased. 

4.2. S o l u t i o n  fo r  a << 1 

The solution of Equations 12 also develops a two-region 
structure when a is small. There is now a relatively thin inner 
region in which h takes a large and almost constant value and 
a much thicker outer region at the outer edge of which the 
outer boundary conditions are obtained. 

The discussion starts with the inner region by applying the 
transformation 

f = a-1/2w,  h = a -2p ,  r I = a-1 /2y  (38) 

with the inner region being relatively thin, i.e., having a 
thickness of 0(a~/2). When transformation 38 is applied to 
Equations 12, the resulting system is 

w'" + p + ww" - w '2 = 0 (39a) 

p" + a(wp' - w'p) = 0 (39b) 

subject to the boundary conditions 

w(0) = 0, w'(0) = 0, p'(0) = -al /2p(0) (39c) 

with the outer boundary conditions relaxed at this stage 
(primes now denote differentiation with respect to q). The 
boundary conditions in Equations 39c suggest looking for a 
solution by expanding 

w(q; tr) = Wo(q) + al/2wl(q) + . . .  (40) 

p(q; a) = po(r/) + al/2p~(~) + ..- 

At leading order, 

P0 = A0 (41a) 

for some positive constant Ao to be determined; then 

w o' + Ao + WoW o - Wo 2 = 0 (41b) 

to be solved subject to Equations 39c, and 
t t  

Wo-*0 as q - - * ~  (41c) 

Condition 41c then implies that 

Wo ~ x ~ o ~ / +  Bo (41d) 

as r/--. oo for some further constant B o. The substitution 

Wo = A~/'*~o, F1 = A~/'*rl (42) 

reduces Equation 41b to a standard Falkner-Skan problem, 
from which it follows that w~ (0)= 1.23259Ao 3/4 and 
B o = - 0.64790 An~'* (Rosenhead 1963). 

At 0(al/2), on satisfying p'x(0) = --Ao, 

Pl = - A o q  + Aa (43) 

for some constant A x. The equation for w~ then becomes, on 
applying Equations 42, 

w'~' + A I A o  3/'~ -- 0 +  #oW~ -- 214'o#'1 + I'VoWl = 0 (44a) 

Equation 44 has to be solved subject to 

02 
wx ~ - - -  + ½(A1Ao a/'* - BoAoX/4)O + B 1 as 0 --* oo (44b) 

2 

A consideration of Expressions 41a, 41d, 43a, and 44b 
suggests writing for the outer region 

f = a - l W ,  h = t r -2p (45) 

and leaving y unsealed. Equations 12 now become 

P + W W "  - W '2 + a W ' "  = 0 (46a) 

P" + W P '  - W ' P  = 0 (46b) 

subject to 

W ' - - * O , P - - , O  a s y ~  (46c) 

On matching with the inner region, 

P ~ Ao - A o y  + "'" + al/2(Az + "") + ""  (46d) 

W ~  ~v/~o y - ~oo 2 ~ / ~ - y  + " "  

+ al/2(Bo + ~Ao t/2A1 - Bo)Y + "") + . . .  

as y --* 0. 
The above matching conditions (Expressions 46d) suggest 

looking for a solution by expanding 

P(y; a) = Po(Y) + al /2pI(Y)  + " "  (47) 

W(y;  o-) = Wo(y ) + f f t /2Wl(y  ) + . . .  

At leading order, 

P0 + Wo W~ - W~ 2 = 0 (48a) 

Po + WoPo - W'oPo = 0 (48b) 

The solution of Equations 48 that satisfies both Expressions 
46c and the appropriate matching condition from Expressions 
46d is 

Ao = 1, I4/o = 1 - e -y, Po = e-Y (49) 

The equations at 0(a z/2) are straightforward to write down, and 
can also be solved simply. Their solution, using Equations 49, is 

A1 = - B o ,  W1 = Bo e-y ,  P1 = - B o  e - y  (50) 

Having determined A 0 and A1, the solution of Equation 44 in 
the inner region can now be completed, where it is found that 
w'~(0) = 0.41392, on solving this equation numerically. 

Finally, from Equations 38, 49, and 50, 

h(0) ~ o"-2(1 + 0.6479 a 1/2 + 0(a)) (51) 

f"(0) ~ a-s/2(1.2326 + 0.4139 a ~/2 + o(a)) 

as a --, 0. Graphs of the asymptotic forms (Expressions 51) are 
also shown in Figure 4b (by the broken lines). The agreement 
between Expressions 51 and the numerical solutions is not as 
good as it is for the case of large Prandtl numbers, being less 
satisfactory for f"(O) than for h(0). The relatively large 
discrepancy between the two curves for f"(0) suggests that the 
contribution to this expression from the 0(a) term could well 
be quite large. 

Expressions 51 show that h(0) depends on a through a 
relatively large inverse power; h(0) is 0(a -2) for a small. This 
explains why the surface temperature is sensitive to small 
changes in Prandtl number, with this sensitivity increasing as 
the Prandtl number is reduced. It is interesting to compare this 
dependence with that for the prescribed heat-flux problem 
(Merkin 1989) where the surface temperature was found to be 
much less sensitive to Prandtl number variations, being on the 
order of 0(a-2/5) for a small. An even more striking difference 
to Prandtl-number dependence is seen when the present 
problem is compared with the isothermal surface solution for 
small Prandtl number (Kuiken 1969). For  this problem, the 
surface heat flux decreases as the Prandtl number decreases, 
being on the order of0(a z/2) for small a, whereas in the present 
case the surface heat flux increases rapidly as the Prandtl 
number decreases, being on the order of 0(a-2) from Equations 
38, 41a, and 43. 
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Table I Comparison between the solution of Equations 12a and 
12b with the present boundary conditions, if(O) + h(O) = O, with 
prescribed surface temperature, h(O)= 1, and with prescribed 
surface heat flux, h'(O) = - 1 .  

-h '(O) f(oo) 
f'(O) or h(O) 

Newtonian heating 0.72 5.1405 12.3760 2.2201 
if(0) + h(0) = 0 7.0 0.4127 0.7430 0.4995 
Prescribed temperature 0.72 0.7791 0.5332 1.1836 
h(0) = 1 7.0 0.5157 1,0771 0.5380 
Prescribed heat flux 0.72 1.1362 1.6539 1.3423 
if(0) = -1  7.0 0.4932 0.9423 0.5300 

5. Discussion 

The similarity system given by Equations 12a and 12b and 
boundary conditions 12c has been considered in some detail. 
Equations 12a and 12b also arise as free-convection similarity 
equations when the more usual prescribed surface temperature 
or prescribed surface heat-flux boundary  conditions are 
applied. In this case, these arise when the surface temperature 
or heat flux is proportional to x or the distance from the leading 
edge (Gebhart et al. 1988). It is of interest to compare the 
solution in the present case, where the surface heat flux and 
temperature are related via h ' (0)= -h(0),  with the solution 
when the surface temperature is prescribed, i.e., with h(0) = 1, 
and with the solution when the surface heat flux is prescribed, 
i.e.i with h ' (0)= - 1 .  The results are summarized in Table 1 
where values of f"(O), h(O) or - h '  (0) (as appropriate), and f 
(oo) for Prandtl  numbers cr = 0.72 (for air) and cr = 7.0 (for 
water at room temperature) are given. 

As expected, there are differences in each case in f"(0), h(0) 
or -h '(0) ,  and f (oo) between the two values of or, with these 
differences being much more marked for the Newtonian- 
heating case than for the prescribed-temperature and heat-flux 
cases. This finding is in line with the previous conclusion that 
the present solution is much more Prandt l -number  sensitive (at 

least for moderate values of a). Also, the values for a = 0.72 
for the Newtonian-heating case are substantially higher than 
the corresponding values for the other two cases. However, for 
larger values of the Prandtl  number  (a = 7.0), the values f"(O) 
-h ' (0)  or h(0), and f (oo) are comparable in all three cases. 
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